Contenuti esclusivi

Nutrizione: aumentano i disturbi del comportamento alimentare. A rischio i giovanissimi

Aumentano i casi, soprattutto tra i più giovani, di...

San Luigi di Orbassano: un nuovo reparto di medicina nucleare e un acceleratore lineare per i pazienti oncologici

All'ospedale San Luigi Gonzaga di Orbassano si potenzia la...

Spallanzani e villa Maraini accanto alle sex worker per contrastare hiv e infezioni sessualmente trasmissibili

In occasione della European Testing Week, organizzata dall’Istituto Nazionale...

Machine learning prevede 10 giorni prima chi sarà grave

Dalle esperienze cliniche maturate su 485 pazienti cinesi infetti e curati nella regione di Wuhan, l’uso di un algoritmo attraverso l’impiego di machine learning (tecnologia XG Boost) è in grado di prevedere chi sarà a rischio di vita. L’albero decisionale analizzato attraverso questa macchina si basa su un modello complesso che dai dati ematochimici dei pazienti ha identificato dei punti fondamentali per prevedere l’evolvere della malattia. Questo potrebbe migliorare il processo decisionale dei medici, rendendolo più efficace evitando sprechi di tempo e risorse, curando da subito più efficacemente i pazienti che ancora non sappiamo essere più a rischio.

I risultati di questa analisi sono riportati sulla rivista Nature Machine Intelligence ed hanno evidenziato che alcuni semplici esami facilmente disponibili in tutti i laboratori, possono svolgere un ruolo predittivo sull’aggravamento ma soprattutto sulla mortalità per COVID-19. L’algoritmo impiegato nel Machine learning ha selezionato tre esami fondamentali che sono stati in grado di prevedere la mortalità sui singoli pazienti con più di 10 giorni di anticipo e un’accuratezza superiore al 90%.  Questi sono:

  • LDH= lattato deidrogenasi il cui aumento è correlato al danno tissutale e/o cellulare e rappresenta un marker di lesione polmonare,
  • hs-PCR= proteina C reattiva ad alta sensibilità che riflette lo stato di infiammazione persistente con stress respiratorio acuto
  • % di Linfociti che è un fattore critico associato alla gravità e alla mortalità e rappresenta il livello danno delle cellule polmonari).

La età media dei 485 pazienti cinesi studiati era di circa 59 anni e quasi il 60% di loro era di sesso maschile. I dati considerati validi riguardavano di 351 pazienti sui quali, i livelli relativamente elevati di LDH da soli sembravano avere un ruolo predittivo cruciale nel distinguere i pazienti che necessitavano di cure mediche immediate. Machine learning era in grado di prevedere l’aggravamento di tutti i pazienti confermati positivi, almeno 10 giorni prima degli esiti clinici attraverso i campioni di sangue e poteva mantenere un’accuratezza superiore al 90% fino a 18 giorni di anticipo. Più si avvicinava la data dell’esito del paziente rispetto a questo intervallo e più la previsione era esatta. Nei casi in cui le condizioni del paziente peggioravano, l’algoritmo era in grado di fornire un preavviso ai medici sempre con qualche giorno di anticipo.

Questa metodica di machine learning, che attraverso l’esecuzione di test ematici facilmente effettuabili in qualsiasi laboratorio, è in grado di identificare prima che si verifichino conseguenze irreversibili e con certezza quasi assoluta i pazienti ad alto rischio di complicanze e di morte, dimostra come la tecnologia sia oramai fondamentale. Speriamo sia un esempio pratico di cosa si può realizzare in molte altre aree complesse e ancora sconosciute della medicina.

Seguici!

Ultimi articoli

Nutrizione: aumentano i disturbi del comportamento alimentare. A rischio i giovanissimi

Aumentano i casi, soprattutto tra i più giovani, di...

San Luigi di Orbassano: un nuovo reparto di medicina nucleare e un acceleratore lineare per i pazienti oncologici

All'ospedale San Luigi Gonzaga di Orbassano si potenzia la...

Spallanzani e villa Maraini accanto alle sex worker per contrastare hiv e infezioni sessualmente trasmissibili

In occasione della European Testing Week, organizzata dall’Istituto Nazionale...

Nuovi LEA e Nomenclatore: CReI esprime preoccupazione per l’assenza di prestazioni reumatologiche essenziali

Il Collegio dei Reumatologi Italiani (CReI) segnala lacune significative...

Newsletter

Registrati e ottieni le nostre rassegne stampa in esclusiva!

spot_img

Da non perdere

Nutrizione: aumentano i disturbi del comportamento alimentare. A rischio i giovanissimi

Aumentano i casi, soprattutto tra i più giovani, di...

San Luigi di Orbassano: un nuovo reparto di medicina nucleare e un acceleratore lineare per i pazienti oncologici

All'ospedale San Luigi Gonzaga di Orbassano si potenzia la...

Spallanzani e villa Maraini accanto alle sex worker per contrastare hiv e infezioni sessualmente trasmissibili

In occasione della European Testing Week, organizzata dall’Istituto Nazionale...

Nuovi LEA e Nomenclatore: CReI esprime preoccupazione per l’assenza di prestazioni reumatologiche essenziali

Il Collegio dei Reumatologi Italiani (CReI) segnala lacune significative...

Inaugurata a Palazzo Lombardia la mostra fotografica “La Salute a Due Passi da Te”

Una mostra fotografica per sensibilizzare sul ruolo fondamentale delle...
spot_imgspot_img

Nutrizione: aumentano i disturbi del comportamento alimentare. A rischio i giovanissimi

Aumentano i casi, soprattutto tra i più giovani, di disturbi della nutrizione e dell’alimentazione o disordini del comportamento alimentare, che includono anche molti soggetti...

San Luigi di Orbassano: un nuovo reparto di medicina nucleare e un acceleratore lineare per i pazienti oncologici

All'ospedale San Luigi Gonzaga di Orbassano si potenzia la cura in oncologia. La medicina nucleare è stata completamente rinnovata e anche sul piano tecnologico...

Spallanzani e villa Maraini accanto alle sex worker per contrastare hiv e infezioni sessualmente trasmissibili

In occasione della European Testing Week, organizzata dall’Istituto Nazionale per le Malattie infettive “Lazzaro Spallanzani” Irccs in collaborazione con diverse istituzioni e associazioni, nella...